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1 * INTRODUCTION

The LSR/2 Fiber-Optic System is intended as a first step in provid-
ing a tractable signal transmission system to replace long runs of
expensive unwieldy coaxial cable, as well as providing other benefits
such as imnunity from electromagnetic interference. The flat frequency
characteristic of modern optical fiber makes it unnecessary to provide
equalization, save for a modest amount built permanently into the
electronics of the receiver and transmitter. The convenience of the

*fiber optics is evident from the fact that a cable containing six
individual 1-km-long fibers, each capable of nearly flat frequency
response to several hundred megahertz, is packaged on a spool which can
be lifted by one man.

As can be seen in figures 1 and 2 (p 6 and p 7) no attempt was made
to minimize either the physical size or the power requirements of the
LSR/2. To do this was not a requirement for the present application,
and it was felt that serviceability and adaptability would be enhanced
if a convenient physical assembly were employed. It is expected that
additional functions and features will be found desirable as experience
is accumulated in the application of this system: the extra "real
estate" will probably enable these to be added on inside the original
cabinets.

Although at least one commercial source offers a package consisting

of laser, thermoelectric cooler, and intensity stabilizer, in our tests
it was not clear that this package offired all the desired design
features; with the modular construction of the LSR/2 it will be possible
to retrofit improved lasers without having to replace other portions of
the system. At the time of writing (April 1979), the Mitsubishi ML-
2205F was being used.

2. SYSTE DESCRIPTION

The basic concept of the LSR/2 is extremely simple: a cw laser
diode is biased to an optimum value for linearity and modulated by the
appl 4 ed signal. This amplitude-modulated light signal is then trans-
mitted .to a remote point by an optical fiber. The signal is then
detected and demodulated by a silicon diode, amplified, and made avail-
able at an output connector.

The laser must be carefully selected and individually tested to
determine its actual dynamic operating characteristics. It must then be
maintained at a constant (optimum) operating point by optical feedback,
temperature control, or both (the LSR/2 employs both). At the receiving
end, the silicon detector must be temperature stabilized. Throughout
the system, the circuitry must be wideband and also provide substantial
gain. In addition to this, some nonbasic functions such as remote
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control, calibration, and self-check are provided to allofo dcoesn-
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Fi~gure 1. External views Of (a) laser transmitter

and (b) opti.cal receiver.
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Figure 2. Internal view of laser transmitter.

3. SPECIFICATIONS

The LSR/2 is designed to transmit analog signals within the limits

of approximately *0.3 V; the exact limits vary from unit to unit and are
specified in the individual calibration data. Digital signals may also
be transmitted, but a shift in operating bias is desirable if only

digital use is desired. The bandwidth is at least from 5 kHz to 200 MHz
(-3 dB points) for a transmission distance of 1 km.

The dynamic range is greater than 30 dB, defined as follows: the

lower signal level is that which produces a 1:1 signal to noise ratio
(S/N), as determined by the tangential method; 1 the upper signal level
is that where the harmonic content is as many decibels below the funda-
mental as the fundamental is above the level producing the 1:1 S/N.

System gain is approximately 1. The gain may at any time be deter-
mined to an accuracy of 1 dB by energizing the calibrator (see sect.
4.2). The system inverts the signal being transmitted. This is easily

1G. Franklin and T. Hatley, Noise Measurement, Electronic Design, 24

(22 November 1973), 184.
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contended with by the use of the inverting switch which appears on the
oscilloscope vertical deflection plug-in. Were this is not feasible, a
wideband (transmi ssion- line wound) inverting transformer may be used at
either the receiver or transmitter.

A calibrator is an integral part of the signal transmitter and can
be energized either by the control on the transmitter front panel or
(via the optically coupled remote control) by the control on the receiv-
er panel. When the calibrator is operated, a coaxial switch disconnects
the transmitter's input from the front-panel input connector and instead
connects it to a 100-MHz sine-wave oscillator which is stable *1 dB and
has a harmonic content of -30 dB or better.

The LSR/2 system is intended for use in a laboratory temperature
range of 10 to 35 C. Where required, this temperature range can be
considerably extended by modification of the system. Operation of the
transmitter in areas of very high humidity may cause difficulty from
water condensation on the laser (which is temperature controlled at
about 25 C). If operation in such environments is necessary, the unit
can be modified either by raising the laser temperature (with possibly
some sacrifice in SIN) or by hermetically sealing the temperature-
controlled laser.

4. TRANSMITTER CIRCUITRY

4.1 Laser Stabilization

A laser is used as the transmitting element in the LSR/2. it
produces an optical output which serves as the carrier, and this carrier
is amplitude modulated by the input signal. The single-mode laser used
in this system has a highly linear light-output versus current-input
relationship, making low distortion possible. A seemingly desirable
consequence of the structure of the single-mode laser--its very narrow
spectral line width--actually exacerbates problems such as modal noise
which result from interference between the various modes propagating in
a multimode fiber. It must be emphasized that these undesirable inter-
ference effects should not be looked upon as malfunctions of the laser;
instead they are created in the optical fiber and its connectors as a
result of the coherence of even a perfectly normal single-mode laser.
Section 6 discusses some aspects of the problem of controlling modal
noise in the system.

To obtain maximum linearity it has been found necessary to
measure the actual dynamic characteristics of the individual laser with
a test apparatus consisting of a variable-amplitude laser driver, a
laser bias and temperature controller, a low-distortion optical re-
ceiver, and a spectrum analyzer. The optimum bias current (within a
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reasonable portion of the laser's rated drive) and the most favorable
temperature (within the range of about 15 to 30 C) are determined by
experiment. Although an operating system will certainly be obtained by
biasing on the basis of the manufacturer-supplied dc laser curves, a
dynamic measurement will determine more accurately the proper levels.

The laser's temperature is held at the optimum temperature by a
thermoelectric (Peltier effect) heater/cooler module. Even with thermal
stabilization the laser will slowly degrade over thousands of hours so

* that the optical output for a given current will fall off. A photodiode
observes the actual output of the laser and feeds back a signal which
increases the current slightly as required to maintain the original
intensity.

1C2 and Ti to T6 (fig. 3) control the laser's temperature
through the thermoelectric heater/cooler. THI and R2 form a voltage
divider so that the input to the inverting terminal of 1C2 becomes more
positive as temperature increases. This voltage is compared with the
voltage at the noninverting input, with the result that the voltage out
of 1C2 equals half the 5.25-V supply voltage when the temperature is
correct, becomes more negative when the temperature is high, and more
positive when the temperature is low. A more pocitive voltage turns on
T1i, T2, and T3. The end result is that the current applied to the
heater/cooler assumes a proper polarity and amplitude so as to correct
the temperature drift.

ICI amplifies the output of a separate thermistor and this
output drives the monitor panel meter in the 10 C position of the five-
position monitor switch.

1C3 and associated circuitry (fig. 4) form the optical stabi-
lizer for the laser. The laser's output is monitored by PIN diode D1,
and the PIN's current is balanced against the current through R5. if
the laser's intensity decreases, the current through the PIN decreases,
causing an increased forward bias to T7. The increased current through
T7 increases laser intensity. To avoid the possibility of some tran-
sient or malfunction burning out the laser, the voltage drop across R4
and the 100-ohm laser isolation resistor is made high enough that even
saturation of T7 will not produce burnout.

IC4, in connection with the monitor meter and the five-position
monitor selector switch, allows one to determine whether the intensity
regulator is within normal operating range. The meter will indicate at
the red reference mark whether the intensity stabilizer is in balance.

9
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Figure 3. Laser temperature control and temperature
monitor circuitry.

611h 3NOTE: NEGATIVE POWER

0 -J 0.1 PF O~ P~ IL.,AATI

OUTU PTO

A SEOo APCT A ECP YP

FigureE 4.n Laser optica outptIsabilzer

10EST OIO) 010 OIO EE

04% DODE ASE HOWN N "OTICA



4.2 Calibrator

Calibration is provided by a stabilized 100-MHz oscillator
employing the MC1648 (fig. 5). This IC combines an emitter-coupled
oscillator, a buffer amplifier, and feedback stabilization of ampli-
tude. Li-Cl determines frequency and L2-C2 forms the buffer tank, which
is tapped to provide an impedance match. R6 allows for level adjust-
ment. To monitor the level of the calibrator it can be disconnected
from the coaxial relay (RYI) and fed directly to a 50-ohm scope or
spectrum analyzer.

C2 L2

14
T 1518-6 62 40

12N

73
Figur 5 00100 MHz SINE

I lk -
OUTPUT

• R6

IC5: MC1648
IC6 ~IC6: 723 VOLT REG

V. REG. NOTE: UNMARKED CAPACITORS

c"2.3 V E YARE CHIPS

ZENER

+7.7V

Figure 5. 100-MHz stable sine-wave generator.

4.3 Remote Control

Two PIN diodes, D2 and D3, of figure 6, are mounted on the
front panel of the transmitter. The current through the PIN diode
appears as a voltage drop across a l-megohm resistor and is compared to
a fixed voltage at the (+) input of IC7 or IC8. When PIN diode D2 is
illuminated, the output of IC7 goes low and pulls the (+) input of IC3
low via the line connected to CN-1. This causes the laser current to
switch to a low (although not zero) idle current. When D2 is dark, the
output of IC7 goes high and D4 disconnects IC7 from IC3.

11;
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Figure 6. Optical control circuitry.

In similar fashion, D3 and IC8 control the current through RY1,
thus connecting the laser input to either the front-panel connector or
the output of the calibrator.

5. OPTICAL RECEIVER CIRCUITRY

The optical signal receiver diagrammed in figure 7 consists of an
avalanche photodetector which detects and demodulates the amplitude-
modulated signal from the laser diode, a power supply and protection
circuit for the photodiode, and a wideband signal amplifier of approxi-
mately 20x gain. IC10 produces a 2.5-V reference which is compared with
the cathode voltage on detector D4 via R9 and RI0. IC9 drives T8
sufficiently to pull the required current through R11 and R12 to drop
the cathode voltage to the correct value. Z2 drops the collector

voltage of T8, thus reducing its dissipation. Thermistor TH1 provides
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- , for an increase in detector voltage as temperature increases; as conduc-

tion through THI increases (in response to increasing temperature) a
higher current is required through R9, thus increasing detector volt-
age. R8 adjusts the rate of temperature correction.
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Figure 7. Optical receiver.

If the +15 V supply should fail and the supply voltage to IC9 and
ICI0 approach levels where the regulation would not function, TIO will
go out of conduction and T9 will turn on, crowbarring the detector
voltage to 100 V, a safe value under any condition. This protection is
necessary since excessive voltage drive to detector D4 can quickly
damage it.

The signal amplifier consists of two stages of Avantek Co. GPD
amplifiers. The upper bandwidth limit of these devices is over 500 MHz
and the lower limit is controlled by the coupling capacitors. The laser
produces enough optical power that the signal reaching the detector is
large (-50 jiW) even after passing through I km of fiber and several
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connectors. A 15-percent transmission filter is placed between the
detector and the fiber to limit current to a safe level while the
detector voltage (and consequently gain) is great enough to provide
reach-through and high-frequency operation. The large signal makes a
low-noise front end (such as the typical transimpedance design) unneces-
sary. The shot noise and excess noise contributions of the avalanche
detector are greater in this analog-modulated system than in typical
digital systems; this is because a "weak signal" is really a small
variation superimposed on a much larger dc background signal. A large
background increases both types of noise. 2

The receiver cabinet also contains two LED's and their associated
current-limit resistors and switches for the purpose of sending the
remote-control signals through the fiber-optic control lines to the PIN
diodes D2 and D3 of figure 5.

6. MODAL NOISE REDUCTION

As Epworth points out, 3 modal noise occurs when the constantly
varying speckle pattern produced in the fiber by interference between
fiber modes is. passed through a mode selective mechanism such as a
misaligned fiber butt-joint. In any real system the speckle constantly
varies in response to many variables, such as change of laser wavelength
in response to laser temperature changes in response to modulation
current, mode jumps in the laser in response to modulation, and changes
in mode structure in the fiber in response to pressure, flexure, vibra-
tion, etc. To minimize modal noise, several approaches are possible,
including minimizing the number of fiber joints, making these joints as
non-mode-selective as possible, and decreasing the coherence of the
laser source in order to minimize interference among fiber modes.

In the LSR/2 only one fiber-to-fiber joint is used, the one on the
front panel of the transmitter. This joint connects the fiber pigtail
which is integral with the ML2205F laser to the 1-km transmission
fiber. Several types of butt-type connectors and a Deutsch* lens-type
connector were tried at this location; the experiments convinced us that
the Deutsch connector was less conducive to modal noise than any of the
butt-type connectors. This is probably because the lens system in the
Deutsch connector was designed to conserve not only optical power but

2 H. Melchior and W. Lynch, Signal and Noise, Response of High Speed
Germanium Photodiodes, IEEE Trans. Electron Devices, ED-13 (1966), 829.

3R. Epworth, Phenomenon of Modal Noise in Fiber Systems, Paper ThD1,
OSA Meeting, Washington, DC (8 March 1979).

*Manufactured by the Deutsch Electronic Obmponents Division, Banning,
CA.
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also the optical mode structure.4  Assuming such mode conservation, the
undesirable mode selection mechanism is reduced or eliminated.

At the receiving end of the link, the fiber's end is simply directly
mated to the window of the optical detector (with the 15-percent trans-
mission filter interposed). It was found that an avalanche detector
which was fitted with an integral short length of optical fiber (a few
millimeters) at the input increased modal noise; this is no doubt due to
the mode-selective character of typical butt-joints.

A novel technique,5 experimentally found to decrease modal noise and
presumed to operate by decreasing the laser's coherence, is used to
further decrease modal noise problems. A signal of about 2 GHz is
applied to the laser along with the signal to be transmitted. This
signal constantly drives the laser back and forth across a significant
portion of its modulation range, presumably constantly dithering the
frequency, as suggested by figure 8, and thus decreasing coherence.
This modulation frequency is sufficiently high that the receiver has no
response and thus responds to the average value, which is set by the
modulation signal applied to the input connector.

895

i
'6 894

M

893 I a p I
24 25 26 27 28 29 30 31

Current (mA)

Figure 8. Current dependence of peak wavelength
(data for ML-2205F laser, reproduced
from Mitsubishi specifications).

4M. Holzman, A Detachable Connector for Multimode Graded Index Optical
Waveguides, Deutsch Company, Electronic Components Division, Technical
Reprint No. 136 (1979).

5 j. Vanderwall and J. Blackburn, The Suppression of Some Artifacts of
Modal Noise in Fiber Optic Systems, Optics Letters, 4, 9 (September
1979), 295.
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7.* FIBER-OPTIC CABLE

For a transmission distance as great as 1 Iam the practical choice of
possible f iber types is restricted to the graded-index type. Fibers
such as PCS (plastic-clad silica) have both loss and dispersion too
great to maintain signal strength and bandwidth. Step-index silica
fibers have losses similar to graded-index silica, but the dispersion is

* too great to maintain bandwidth.

Single-mode fibers have the potential for almost limitless band-
width, but at present are intractable for this type of application. The
laser-to-fiber coupling losses are high, and there is considerable
difficulty in maintaining the single-mode structure when demountable
connectors and severe microbends (induced in laying the flexible cable)
are present. Epworth points out that one of the worst possible condi-
tions for modal noise is that where a "single-mode" fiber begins to
support two modes-~which interfere.

High-quality graded-index fibers having a diameter consistent With
the laser's fiber pigtail and the Deutsch connectors are available from
a number of manufacturers, although the Corning product was used for
testing purposes. Several companies who do not themselves make fibers
do assemble fiber cables. The net result is that almost any combination
of optical fibers, conductors, strength members, armor, etc, is avail-
able.

The operating temperature for all-glass fibers is very wide; the
operating temperature for a fiber cable (one or more fibers along with
their protective sheaths and strength members) is determined by the
cabling materials and methods. With suitable cabling techniques (and no
doubt some trade-off s) temperature from near cryogenic to several
hundred degrees Celsius can be accommodated.

The breaking strength of fibers is exceedingly high (on a cross-
sectional basis), but the small cross section means that a bare fiber

4 can be broken fairly easily--the result, again, is that the cable
strength is determined by cabling methods. The commonly used plastic
and glass cables have a size somewhat less than, a weight much less
than, and a breaking resistance (in our experience) similar to that of
RG-58. These cables are also at least as flexible as the coaxial cable.

It is well known that fibers are susceptible to radiation damage; it
is less appreciated that the frequently used "decibel of transmission
loss per meter per rad" specification ignores important dose-rate
effects. Data obtained in our laboratory, which provide a continuous
subnanosecond-resolution measure of fiber loss before, during, and after
a short radiation pulse, have shown that there is no direct relationship
between miagnitudes of short-term and long-term fiber responses.* It is

16



therefore necessary to make certain that the correct fiber loss values,
long-term or prompt, are used in fiber selection.

In addition to causing increased fiber loss, radiation causes the
fiber to emit light produced by Cerenkov radiation; this light can be a
serious source of noise (and in some instances can completely obscure
the optical signal). Blackburn6 cites the use of optical filters to
substantially reduce the noise produced in the optical receiver by the
luminescence.

8.* CONCLUDING REMARKS

The LSPR/2 extends the advantages of fiber-optic transmission to
analog signalling over a wide bandwidth; the most serious limitation is
the 30 to 35 dB dynamic range. The dynamic range, in spite of caref ul
design, is limited primarily by the modal noise which forms the noise
floor. It is hoped that optical sources, presumably lasers, will be
developed which provide the highly linear response of present-day
single-mode lasers while having less coherence (and therefore less
tendency to excite modal noise). The transmission properties of optical
fibers continue to improve and the price to decrease; this, along with
handling ease and freedomn from noise and TEMPEST effects, continues to
make optical transmission increasingly attractive.

6 j. Blackburn, A Radiation-Hardened Fiber Optic Transmission System
Having a 400-MHz Bandwidth and Linear Response, IEEE Trans. Instrum.
Meas., IM-26, 1 (March 1977), 64.
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